CALIFICACIÓN ENERGÉTICA DE VIVIENDAS

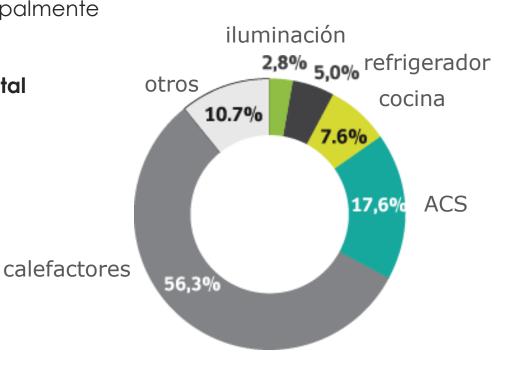
Ministerio de Vivienda y Urbanismo Ditec | abril 2014

Consumo de energía

En Chile el consumo final de energía está determinado por 4 grandes sectores:

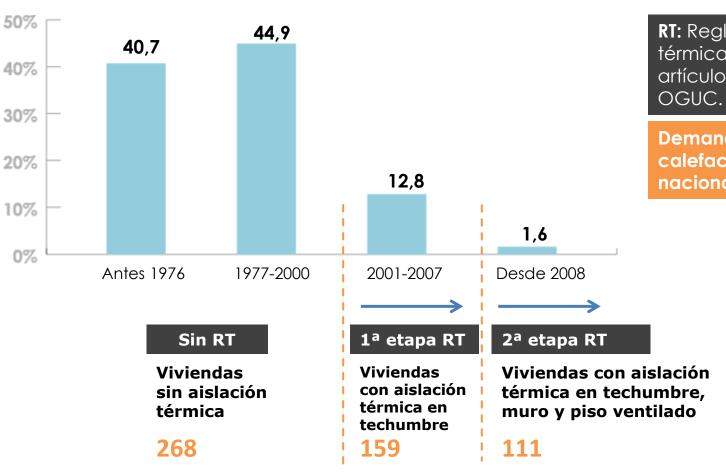
Industrial-minero	38%
Transporte	33%
Residencial – público – comercial	26%
Energético	3%

Fuente: BNE 2010


Del 26% de energía que consume el sector residencial-comercial-público, el 79% es consumo residencial.

Consumo bruto de energía residencial

Estos energéticos son utilizados principalmente a nivel país para:


- Calefacción (56% del consumo total en la vivienda)
- Agua caliente sanitaria (18%)
- Cocina (8%)

Fuente: Estudio de usos finales y curva de oferta de conservación de la energía en el sector residencial de Chile. 2010.

Avances en la Política Minvu

RT: Reglamentación térmica contenida en el artículo 4.1.10 de la

Demanda de energía en calefacción promedio nacional (kWh/m2año)

CONSTRUCCIÓ

Fuente: Estudio de usos finales y curva de oferta de conservación de la energía en el sector residencial de Chile 2010.

Avances en la Política Minvu

El parque de viviendas que genera estos consumos es de un universo de: 5.261.252 al año 2010.

- 85,6% corresponde a viviendas construidas antes de 2000 (aprox. 4.5 millones de viviendas)
- 12%, a viviendas construidas entre 2001 y 2007
- 1,6%,a viviendas construidas desde 2008

Avances en la Política Minvu

El mayor potencial de acción está en el parque viviendas construidas.

Sin embargo, no se puede retroceder lo avanzado sin intervenir el nuevo parque construido.

Avances en la Política Minvu

Mayor potencial de acción está en el parque de viviendas existentes.
No obstante, las viviendas nuevas deben incorporar estos aspectos para no tener que mejorarlo después.

Mayor porcentaje de uso de energía residencial: calefacción, sobre 50%*.

Sin considerar la leña como combustible, pasa a primer orden el consumo de agua caliente sanitaria.

VIVIENDA EXISTENTE

A través del PPPF del MINVU, cuyo enfoque son las viviendas existentes, se crean dos líneas de subsidios que responden a los indicadores de consumo:

Subsidios de Acondicionamiento Térmico. Llamados especiales, 2009 a la fecha.

Subsidio de Obras de Innovación a la Eficiencia Energética. Llamados regulares, 2009 a la fecha.

Piloto 1500 Sistemas Solares Térmicos en Chile. Llamados especiales, 2011-2012.

VIVIENDA NUEVA

Regulación, pilotos e incentivos

Reglamentación Térmica. Art. 4.1.10 OGUC, año 2000 (1ª etapa), 2007 (2ª etapa).

Ley 20.365 de Franquicia Tributaria para empresas constructoras. Desde 2010 a la fecha.

3 Pilotos de Instalación de SST en viviendas del FSV. 2009-2011.

CALIFICACIÓN ENERGÉTICA DE VIVIENDAS Generalidades

Descripción:

Determinación de la eficiencia energética de una vivienda a través de una calificación, que conduce a una evaluación y etiqueta de eficiencia energética.

Objetivo:

Promoción de la eficiencia energética mediante la entrega de información objetiva por parte de los promotores inmobiliarios a los compradores (incorporar criterio energético en la decisión de compra).

Ámbito de Aplicación CEV:

- Viviendas con permiso de edificación posterior a 2007 (CEVN).
- Viviendas construidas antes de 2007 (CEVE). En estudio

CALIFICACIÓN ENERGÉTICA DE VIVIENDAS Generalidades

Modo de implementación

¿Obligatoriedad de la calificación en Chile?

- Se propone una **calificación voluntaria** para introducir el concepto de eficiencia energética en el mercado y mantener el esfuerzo que se está desarrollando en capacitación y proyectos piloto.
- Será obligatoria una vez cumplidas las etapas en marcha. Proceso gradual proyectado a partir de 2016.

CALIFICACIÓN ENERGÉTICA DE VIVIENDAS Generalidades

Ciclo de vida "Consumo Energético" de una construcción

operación.

Certificación Ambiental (LEED, HQE, OTROS)

CALIFICACIÓN ENERGÉTICA DE VIVIENDAS Generalidades

Actores y Responsabilidades

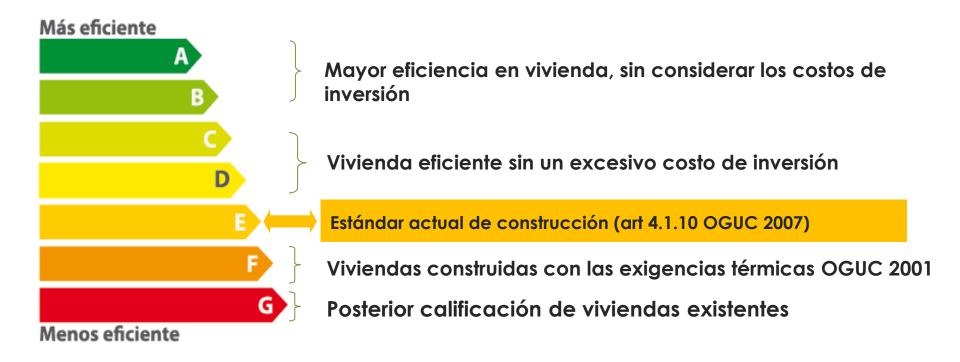
Entidad Responsable

Minvu – M. Energía

- Normar procedimientos (creación y actualización de Manual de Procedimientos)
- Actualización de herramientas de cálculo
- Promoción y difusión de la CEV

Entidad Administradora Minyu

- Administrar herramienta de CEV (plataforma)
- Registrar y emitir las etiquetas de EE
- Fiscalización del proceso de calificación
- Capacitación periódica a evaluadores energéticos
- Registro de evaluadores energéticos



EjecutorEvaluador
Energético

- Acreditar sus conocimientos e inscribirse en registro de consultores Minvu
- Verificar antecedentes de vivienda a calificar
- Emitir evaluaciones por vivienda

CALIFICACIÓN ENERGÉTICA DE VIVIENDAS Generalidades

Escala de calificación

Tipos de Calificación: Etapas del Proyecto

Pre-Calificación Energética:

Es la calificación de eficiencia energética de un proyecto de vivienda nueva. Características:

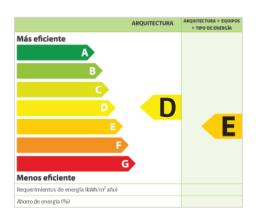
- Etapa de proyecto o en construcción.
- Calificación energética de carácter transitorio y referencial
- Válida hasta la obtención de la recepción municipal de la obra por parte de la DOM.

Tipos de Calificación: Etapas del Proyecto

Calificación Energética:

Es la calificación de eficiencia energética de un proyecto de vivienda nueva que cuente:

- Recepción municipal definitiva emitida por el director de obras municipales.
- Calificación energética definitiva.
 - Si conserve las características que sirvieron de fundamento para su calificación.
 - No podrá utilizarse para fines publicitarios pasados 10 años desde su emisión.



Indicadores principales: LETRA

El sistema entrega 2 LETRAS:

La 1° califica la **ARQUITECTURA** de la vivienda. La 2° califica la **ARQUITECTURA + EQUIPOS + TIPO DE ENERGÍA**.

Requerimientos de energía:

ARQUITECTURA:

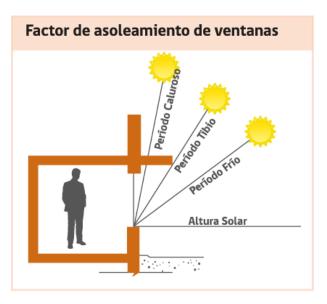
Requerimiento
$$energia \left(\frac{kWh}{m^2 \, a\tilde{n}o} \right) = \frac{Demanda}{energia} = \frac{Demanda}{calefacción} + \frac{Demanda}{iluminación}$$

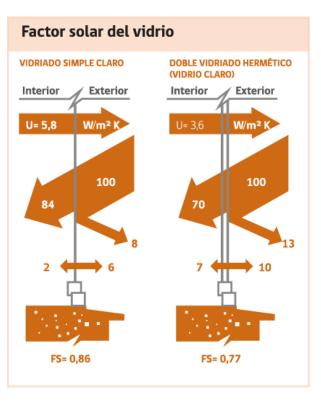
ARQUITECTURA + EQUIPOS + TIPO DE ENERGÍA:

Requerimiento
$$energia$$
 $\left(\begin{array}{c} kWh \\ \hline m^2 \, a \, no \end{array}\right)$ = Consumo $energia$ = $\frac{Dda. \ calef.}{Rendimiento \ de \ los \ sistemas \ de \ transformación \ de \ energia}$

Variables que influyen en la letra de: ARQUITECTURA

1.- Aislación térmica: Transmitancia térmica "U" (W/m2K) de muros, techumbre, piso, puertas y ventanas que conforman la envolvente de la vivienda.

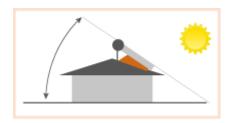


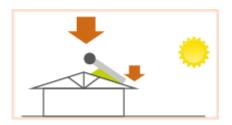


Variables que influyen en la letra de: ARQUITECTURA

2.- Ganancias solares

Variables que influyen en la Letra de: ARQUITECTURA + EQUIPOS + TIPO DE ENERGÍA


3.- Comportamiento energético de los equipos de calefacción y agua caliente sanitaria


- Rendimiento energético de los equipos
- Tipo de energético utilizado en los equipos
- Pérdidas de energía por distribución y almacenamiento
- Pérdidas de energía por tipo de control de encendido

4.- Incorporación de Energías Renovables No Convencionales (ERNC)

 Aporte solar de Sistema Solar Térmico para Calefacción y Agua Caliente Sanitaria.

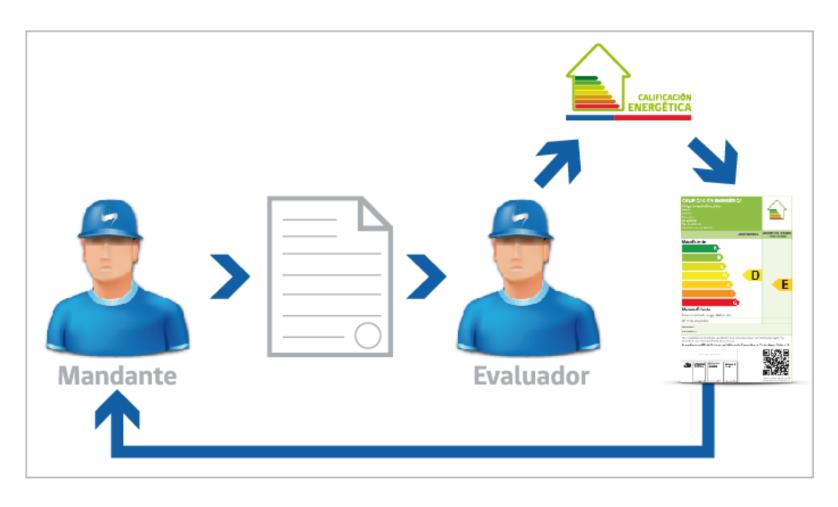
 Aporte solar de Sistema Solar Fotovoltaico para Iluminación.

Variables que influyen en la Letra de: ARQUITECTURA + EQUIPOS + TIPO DE ENERGÍA

El nivel de eficiencia energética o LETRA de una vivienda se determina a través de un coeficiente "C", que corresponde al porcentaje de energía que requiere la vivienda evaluada (vivienda objeto) respecto a su vivienda de referencia.

La vivienda de referencia es una vivienda idéntica a la que se calificará, que cumple con las exigencias mínimas de la reglamentación térmica y que utiliza por defecto gas licuado y equipos estándar para calefacción, iluminación y ACS.

ARQUITECTURA

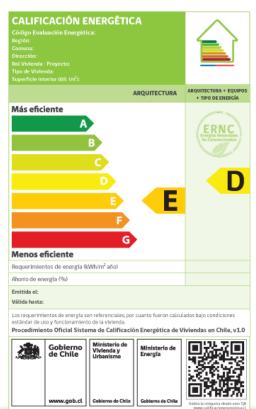

LETRA	ZONAS TÉRMICAS 1 y2	ZONAS TÉRMICAS 3, 4 y 5	ZONAS TÉRMICAS 6 y 7
A	Menos del 30%	Menos del 40%	Menos del 55%
В	30 - 39%	40 - 49%	55 - 64%
С	40 - 54%	50 - 64%	65 - 84%
D	55 - 74%	65 - 84%	85 - 94%
Е	75 - 109%	85 - 109%	95 - 109%
F	110 - 134%	110 - 134%	110 - 134%
G	135% y más	135% y más	135% y más

ARQUITECTURA + EQUIPOS + TIPO DE ENERGÍA

LETRA	ZONAS TÉRMICAS 1, 2 , 3, 4, 5, 6 y 7
А	Menos del 30%
В	30 - 44%
С	45 - 59%
D	60 - 79%
Е	80 - 109%
F	110 - 134%
G	135% y más

CALIFICACIÓN ENERGÉTICA DE VIVIENDAS Metodología

Evaluación



CALIFICACIÓN ENERGÉTICA DE VIVIENDAS **Metodología**

Información mínima requerida

Calificación Energética:

- Solicitud de calificación del mandante
- Declaración del mandante
- Fotocopia permiso de edificación y recepción municipal (solo calificación) aprobado por DOM.
- Copia de planos aprobados por DOM:
 - Loteo y emplazamiento
 - Planta, elevaciones, cortes.
 - Plano de puertas y ventanas

CALIFICACIÓN ENERGÉTICA DE VIVIENDAS **Metodología**

Información mínima requerida

Calificación Energética:

- Especificaciones técnicas aprobadas por DOM con las características principales de:
 - Envolvente
 - Ventanas
 - Sistema de calefacción y ACS.
- Formato de acreditación térmica.
- Formato de acreditación de ventanas.
- Información adicional según corresponda:
 Certificados de ensayos, rendimiento, facturas de compra, etc.

CALIFICACIÓN ENERGÉTICA DE VIVIENDAS Impactos esperados

Potencial de ahorro

CONSUMO ACTUAL RESIDENCIAL

CONSUMO ÓPTIMO

Se consideran sólo medidas económicamente rentables.

*el potencial de ahorro de un escenario de alto costo de energía podría alcanzar **70%**

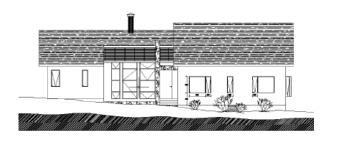
CALIFICACIÓN ENERGÉTICA DE VIVIENDAS Impactos esperados

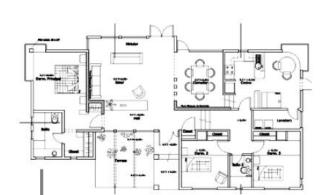
Potencial de ahorro

^{*} del orden del 5% de la generación eléctrica de una central como Ralco (2.500GWh/año)

CALIFICACIÓN ENERGÉTICA DE VIVIENDAS Impactos esperados

Ahorro anual según calificación


Más eficiente A	Ahorro energético: 80% Consumo: 3.840 kWh/año	\$1.131.418	
В	Ahorro energético 60% Consumo: 7.680 kWh/año	\$848.563	
C	Ahorro energético: 50% Consumo: 9.600 kWh/año	\$707.136	
D	Ahorro energético: 30% Consumo: 13.440 kWh/año	\$424.282	
E	Vivienda base consumo 19.200	\$0	
F	kWh/año		
G			
Menos eficiente			


NOTA: Análisis considerando una vivienda de 100 m² con consumo energético promedio de 192 kWh/m² año (80% calefacción, 19% ACS y 1% iluminación), que utiliza gas licuado (\$73/kWh) como energético para calefacción y ACS, y electricidad (\$139/kWh) para iluminación.

CALIFICACIÓN ENERGÉTICA DE VIVIENDAS Ejemplo de evaluación

Departamento en edificio, Coyhaique

Descripción

- Casa aislada de un piso, ubicada en un sector rural de la comuna de Coyhaique
- Programa: 3 dormitorios y 2 baños, de 120,17 m² útiles interiores

Materialidad envolvente:

- Muros exteriores tipo Metalcon, con 60 mm de lana mineral, con un valor U de 0,76 W/m²K.
- Techumbre con aislación térmica de lana mineral.
 Posee 2tipos: en el área del hall de acceso y living tiene un valor U de 0,25 W/m²K y el área restante tiene un valor U de 0,17 W/m²K.

Sistemas y equipos:

Sistema de calefacción por estufa a leña.

CALIFICACIÓN ENERGÉTICA DE VIVIENDAS Aspectos fundamentales de la propuesta técnica

Ahorros estimados en casos piloto calificados

					ficación ergética		en consum ía (kWh/añ		Ahorro en c	onsumo de	e energía	al año (\$)
Tipología vivienda	Sup. (m²)	Ciudad	Zona térmica	Arquitec tura	Arquitectura + Equipos + Tipo de Energía	Calefacción	Iluminación	ACS	Calefacción	Iluminación	ACS	TOTAL
Casa aislada 2 pisos	102,4	Puerto Varas	6	В	D	13517	1229	4506	986.726	0	0	986.726
Casa aislada 2 pisos	182,63	Valdivia	5	A	С	68778	1461	584	1.650.683	203.085	42.662	1.896.430
Casa aislada 1 piso	120,17	Coyhaique	7	С	E	2812	793	853	67.487	110.244	62.284	240.016

Consideraciones:

- En todos los casos el energético utilizado para iluminación es la **electricidad** (\$139/kWh) y para ACS es el **gas licuado** (\$73/kWh).
- En la vivienda de Puerto Varas el energético utilizado para calefaccionar es el gas licuado, mientras que en Valdivia y Coyhaique es leña (\$24/kWh).

Mejoras típicas para obtener calificación por sobre el mínimo

CALIFICACIÓN	MEJORAS EN EL DISEÑO
A	 Ventanas DVH, U inferior a 3 10 cm de aislación térmica en muro por sobre la OGUC 5 cm de aislación térmica en techumbre por sobre la OGUC Aislación de piso sobre terreno con KI = 1
В	 Ventanas DVH, U inferior a 3.6 5 cm de aislación térmica en muro por sobre la OGUC 5 cm de aislación térmica en techumbre por sobre la OGUC Aislación de piso sobre terreno con KI = 1
С	 5 cm de aislación térmica de muro por sobre la OGUC 5 cm de aislación térmica de techumbre por sobre la OGUC Aislación de piso sobre terreno con Kl = 1
D	• 5 cm de aislación térmica de muro por sobre la OGUC

Para definir el **ancho de las letras** se propone un indicador C. Este valor corresponde a la relación entre el desempeño energético del edificio objeto respecto a la referencia.

CALIFICACIÓN ENERGÉTICA DE VIVIENDAS Estrategia de implementación / CEVN

Principales hitos 2012-2013

Minvu – Minenergía

- Implementar la CEV
- Manuales de Procedimientos de CEV (2)
- Capacitaciones de profesionales internos y externos

Evaluadores Energéticos

- Profesionales coordinadores regionales de CEV
- Acreditación de evaluadores
 - Externos: 81 evaluadores acreditados
 - Internos: 16 evaluadores acreditados

Calificaciones Energéticas

- Creación del Sistema de Calificación Energetica
- Más 3000 viviendas privadas y sociales evaluadas
- o en evaluación en SCEV.
- Llamados a Inmobiliarias o Constructoras con proyectos en evaluación a lo largo del país.

CALIFICACIÓN ENERGÉTICA DE VIVIENDAS Estrategia de implementación / CEVN

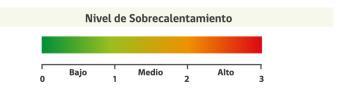
Metas 2014

Minvu – Minenergía

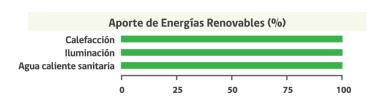
- Protocolos de acreditación para evaluadores internos y externos
- Externalización de capacitaciones CEV (concurso público)
- Protocolo de Fiscalización

Evaluadores Energéticos

- Potenciar equipos regionales CEV
- Acreditación de evaluadores
 - Externos: 100 nuevos evaluadores
 - Internos: 50 Profesionales
- Acreditación de fiscalizadores


Calificaciones Energéticas

- Calificación de 24.000 viviendas (20% parque VN)
 - 18.000 viviendas sociales
 - 6.000 viviendas privadas
- Fiscalización de primeros 50 proyectos/viviendas


Evaluaciones e Informes

Indicadores secundarios

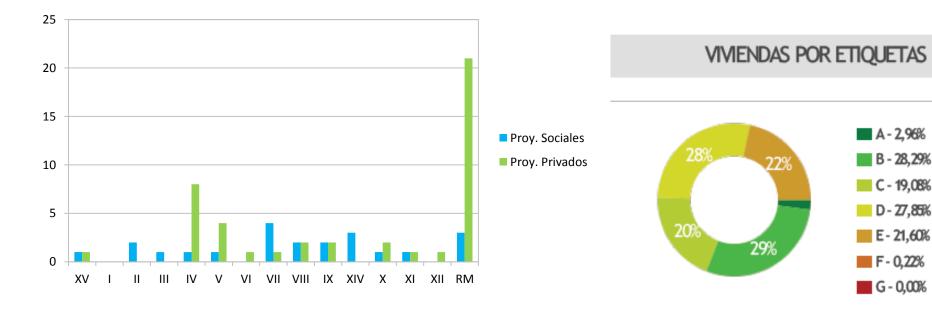
El **indicador de sobrecalentamiento** es un índice cualitativo que evalúa el riesgo de que la vivienda presente problemas de sobrecalentamiento en verano.

El **aporte de energías renovables** indica el porcentaje de energía renovable producida insitu.

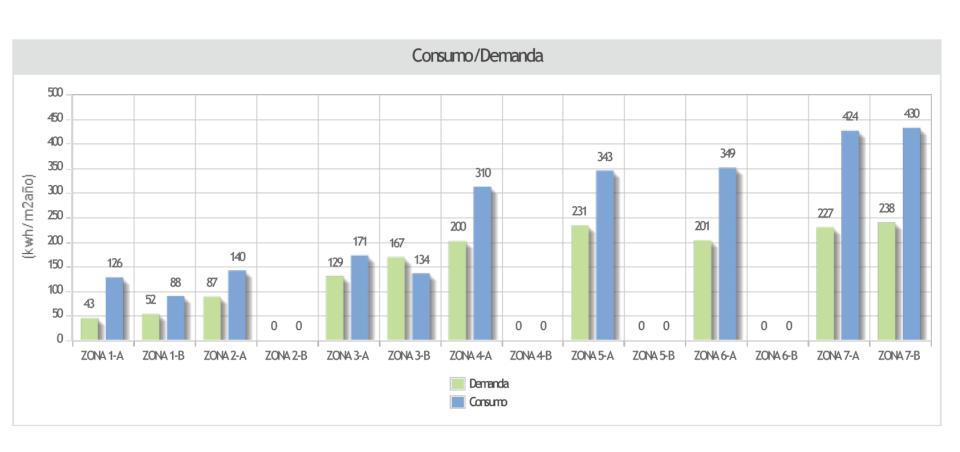
DISTRIBUCIÓN DEL REQUERIMIENTO ENERGÉTICO: AQUITECTURA + EQUIPOS + TIPO DE ENERGÍA

		Calefacción	Iluminación	Agua caliente Sanitaria	TOTAL
Requerimientos de energía	(kWh/m² año)				
	(%)				

Emisiones de CO₂


Este indicador corresponde a la cantidad de CO₂ emitido por su vivienda según el requerimiento de energía total.

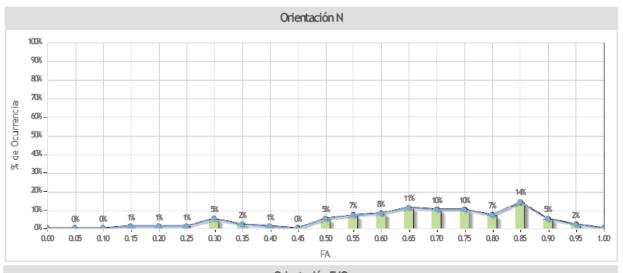
Distribución del consumo de energía primaria.
También se entregan las emisiones de CO2

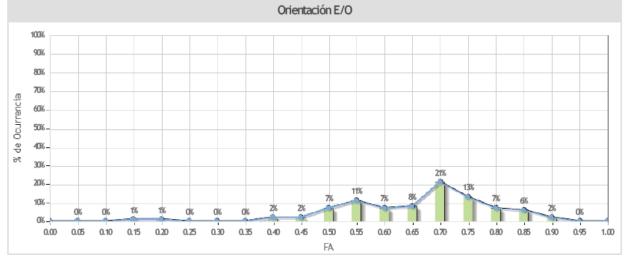

Generalidades / Etiquetas

- 5.000 viviendas en evaluación / 1.000 Etiquetas
- 70 Proyectos evaluados / en evaluación
- Proyectos Privados: Asesoría + Etiqueta (B, C)
- Proyectos Sociales: 40% / Letras C, D, E

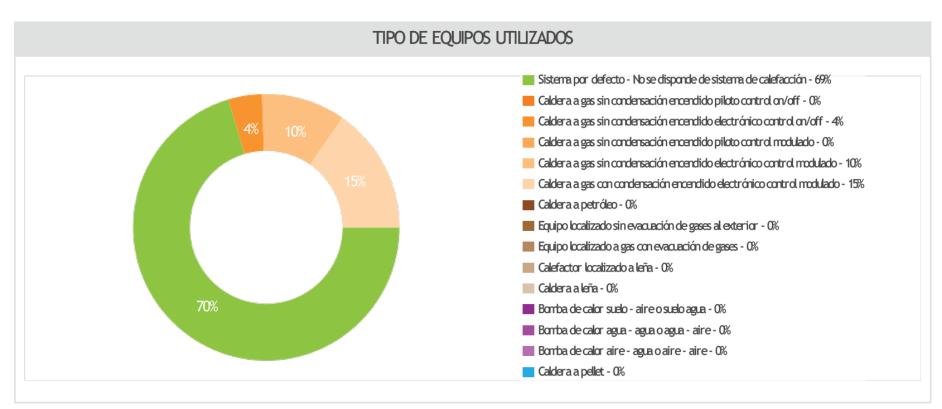
Time	Cantidad			
Tipo	Pre	Cal	%	
Privados	23	16	57,4	
Viviendas Sociales (con subsidio)	9	19	41,2	
DS.01	0	0	0,0	

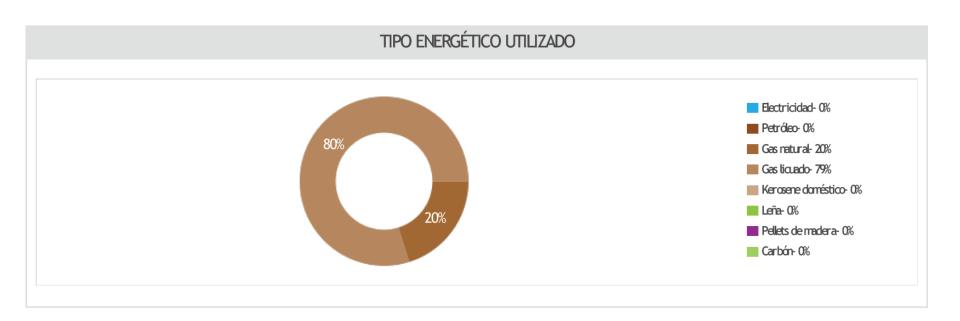
Consumo Promedio (KWh/m2año) / zona térmica


Consumo ítem / Transmitancias Elementos (U)

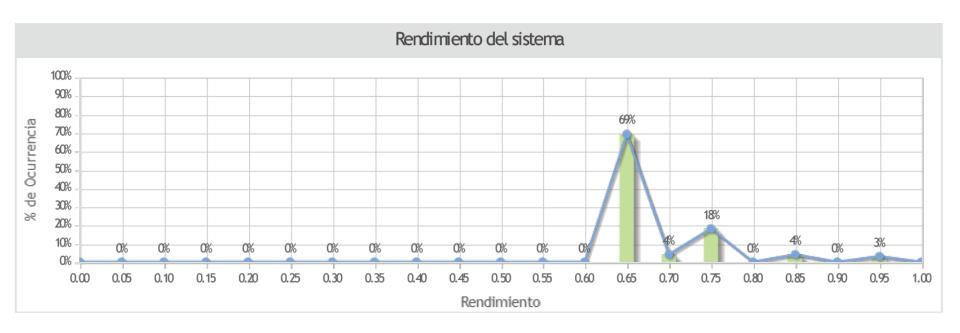

		CALEFACCIÓN	ILUMINACIÓN	AGUA CALIENTE SANITARIA	TOTAL
REQUERIMIENTOS DE ENERGÍA (KWh/m2año)	(kwh/m2año)	173,0	13,5	42,1	228,7
	(%)	72,6	6,8	20,6	100,0

ELEMENTOS DE LA ENVOLVENTE	SUPERFICIE (M2)	TRANSMITANCIA TĒRMICA (W/m2k)		
ELEMENTOS DE LA ENVOLVENTE	SUPERFICIE (WIZ)	VIVIENDA	REGLAMENTA CIÓN TÉRMICA	
MURO PRINCIPAL	72,1	1,110	1,848	
MURO SECUNDARIO	19,6	0,849	1,637	
PISO VENTILADO	14,1	0,556	0,615	
TECHO PRINCIPAL	59,8	0,342	0,444	
TECHO SECUNDARIO	14,4	0,310	0,350	
VENTANA PRINCIPAL	20,2	4,367		
VENTANA SECUNDARIA	17,8	3,743		

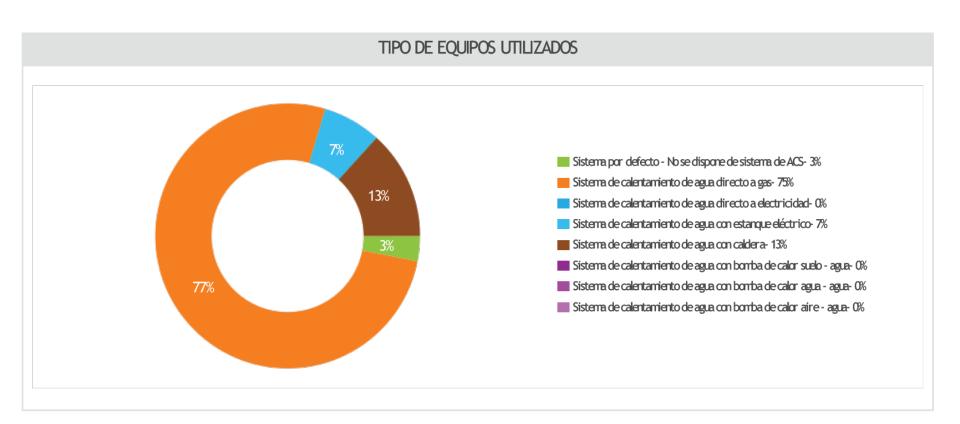

Factor de Asoleamiento / Ocurrencia %



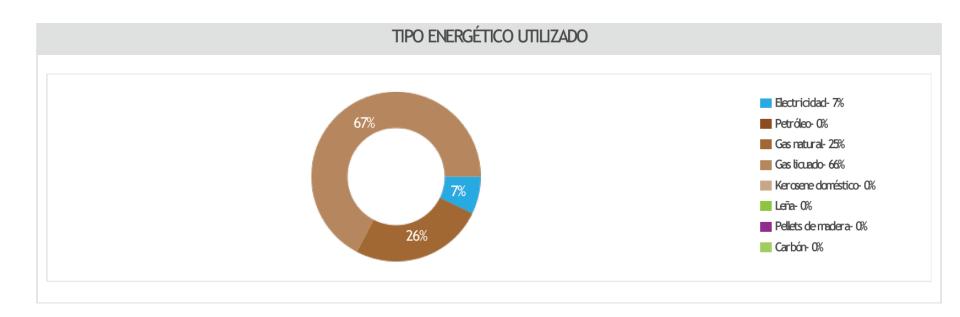
Características equipos de Calefacción / Rendimiento



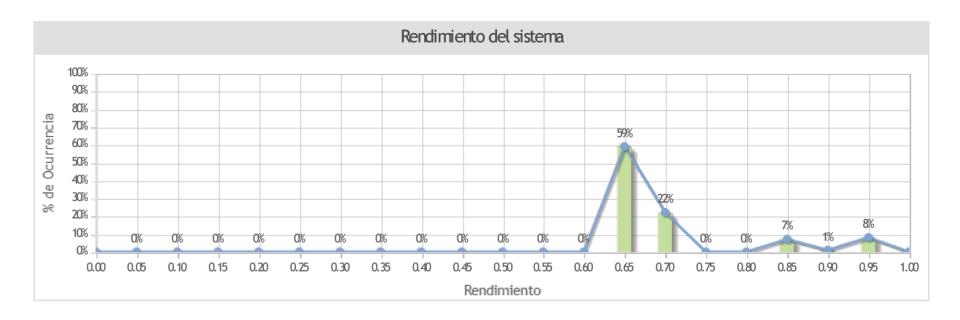
Características equipos de Calefacción / Rendimiento



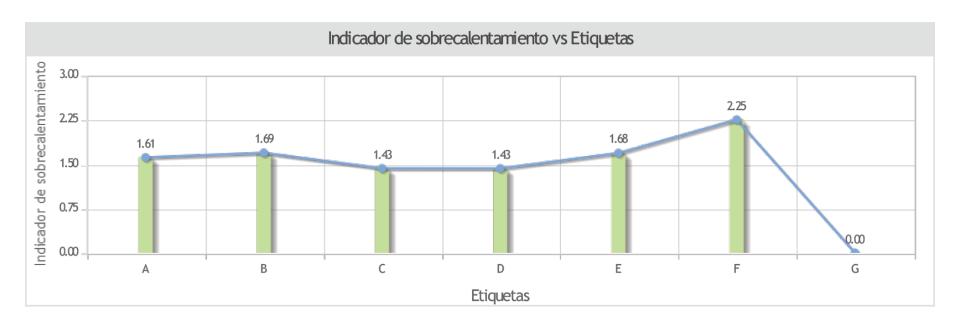
Características equipos de Calefacción / Rendimiento



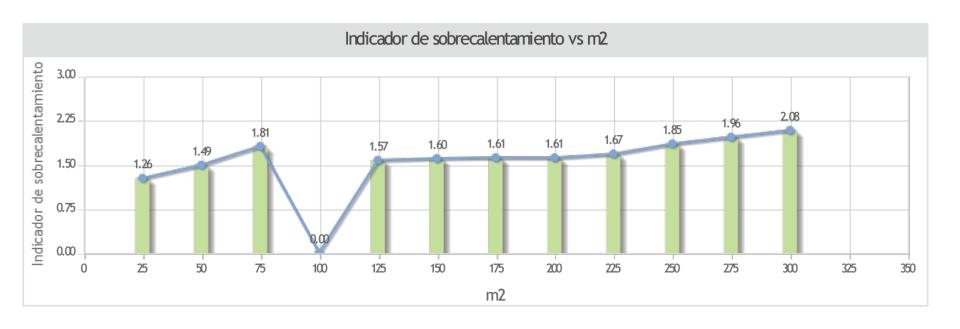
Características equipos de ACS / Rendimiento



Características equipos de ACS / Rendimiento



Características equipos de ACS / Rendimiento



Índice de sobrecalentamiento

Índice de sobrecalentamiento

CALIFICACIÓN ENERGÉTICA DE VIVIENDAS Oportunidad sector inmobiliario

La incorporación de medidas de eficiencia energética en la vivienda generan plusvalía, reducen los costos de vida y mejoran la reventa.

Efectos esperados:

Reconocer la eficiencia energética como un factor diferenciador del producto de vivienda.

Fomentar el bajo consumo energético como una inversión en el valor futuro del inmueble.

Reconocer el valor agregado de las viviendas comprometidas con el medio ambiente (emisiones de carbono).

GRACIAS

